Analysis Scheme in the Ensemble Kalman Filter

نویسندگان

  • GERRIT BURGERS
  • PETER JAN
  • GEIR EVENSEN
چکیده

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter. It is shown that the observations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the observations and generate an ensemble of observations that then is used in updating the ensemble of model states. Traditionally, this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low. This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

We present an efficient variation of the Local Ensemble Kalman Filter (Ott et al. 2002, 2004) and the results of perfect model tests with the Lorenz-96 model. This scheme is locally analogous to performing the Ensemble Transform Kalman Filter (Bishop et al. 2001). We also include a four-dimensional extension of the scheme to allow for asynchronous observations.

متن کامل

An Iterative EnKF for Strongly Nonlinear Systems

The study considers an iterative formulation of the ensemble Kalman filter (EnKF) for strongly nonlinear systems in the perfect-model framework. In the first part, a scheme is introduced that is similar to the ensemble randomized maximal likelihood (EnRML) filter by Gu and Oliver. The two new elements in the scheme are the use of the ensemble square root filter instead of the traditional (pertu...

متن کامل

On the Analysis Scheme in the EnsembleKalman Filter

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman lter. It is shown that the observations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the observations and generate an ensemble of observations which then is used in updatin...

متن کامل

Using Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations

A method for determining adaptive observation locations is demonstrated. This method is based on optimal estimation (Kalman filter) theory; it determines the observation location that will maximize the expected improvement, which can be measured in terms of the expected reduction in analysis or forecast variance. This technique requires an accurate model for background error statistics that var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998